Hardy和Littlewood的一个三角和
On a Trigonometric Sum of Hardy and Littlewood
本文对Hardy和Littlewood考虑的一个有限三角和做了进一步地研究.通过充分运用Chebyshev多项式和Möbius函数的性质,建立了该有限三角和的一个有趣的恒等式,并得到了一个精确的渐近公式.
In this paper, we perform a further investigation for a finite trigonometric sum considered by Hardy and Littlewood. By making use of some properties for the Chebyshev polynomials and M¨ obius function, we establish an interesting identity for the finite trigonometric sum of Hardy and Littlewood, by virtue of which an explicit asymptotic formula is also derived.
有限三角和 / Chebyshev多项式 / Mö / bius函数 / 组合等式 {{custom_keyword}} /
finite trigonometric sums / Chebyshev polynomials / Möbius function / combinatorial identities {{custom_keyword}} /
[1] Apostol T. M., Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] Berndt B. C., Yeap B. P., Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. Appl. Math., 2002, 29:358-385.
[3] Berndt B. C., Zaharescu A., Finite trigonometric sums and class numbers, Math. Ann., 2004, 330:551-575.
[4] Chowla S., On a trigonometric sum, Proc. Indian Acad. Sci. Section A, 1938, 7:177-178.
[5] Egorychev G. P., Integral Representation and the Computation of Combinatorial Sums, Translations of Mathematical Monographs, vol. 59, Amer. Math. Soc., Providence, R.I., 1984.
[6] Fonseca C. M. d., Glasser M. L., Kowalenko V., Basic trigonometric power sums with applications, Ramanujan J., 2017, 42:401-428.
[7] Gervois A., Mehta M. L., Some trigonometric identities encountered by McCoy and Orrick, J. Math. Phys., 1995, 36:5098-5109.
[8] Gervois A., Mehta M. L., Some trigonometric identities II, J. Math. Phys., 1996, 37:4150-4155.
[9] Landau E., Vorlesungen über Zahlentheorie, Leipzig, S. Hirzel, 1927.
[10] Lv X. X., Shen S. M., On Chebyshev polynomials and their applications, Adv. Differ. Equ., 2017, 2017:Article ID 343.
[11] Ma R., Zhang W. P., Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 2007, 45:164-171.
[12] Mason J. C., Handscomb D. C., Chebyshev Polynomials, Chapman and Hall, New York, 2003.
[13] McCoy B. M., Orrick W. P., Analyticity and integrability in the chiral Potts model, J. Stat. Phys., 1996, 83:839-865.
国家自然科学基金资助项目(11326050)
/
〈 | 〉 |