与双调和方程相关的连续模和Heinz-Schwarz型不等式

陈少林

数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 505-522.

PDF(598 KB)
PDF(598 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 505-522. DOI: 10.12386/A2020sxxb0042
论文

与双调和方程相关的连续模和Heinz-Schwarz型不等式

    陈少林
作者信息 +

Modulus of Continuity and Heinz-Schwarz Type Inequalities of Solutions to Biharmonic Equations

    Shao Lin CHEN
Author information +
文章历史 +

摘要

对于给定的两个正整数n ≥ 2和m ≥ 1,假设函数f满足如下条件:(1)在Bn内满足非齐次双调和方程△(△f)=ggCBn,Rm));(2)在Sn-1上满足f=ψ1ψ1C(Sn-1,Rm)),以及∂f/∂n=ψ2ψ2C(Sn-1,Rm)),其中∂/∂n表示内法线方向导数,Bn表示Rn中的单位球以及Sn-1表示Bn的边界.本文主要研究f的连续模和Heinz-Schwarz型不等式.

Abstract

For positive integers n ≥ 2 and m ≥ 1, consider a function f satisfying the following: (1) the inhomogeneous biharmonic equation △(△f) = g (gC (Bn, Rm)) in Bn; (2) the boundary conditions f= ψ1 (ψ1C (Sn-1, Rm)) on Sn-1 and ∂f/∂n = ψ2 (ψ2C (Sn-1, Rm)) on Sn-1, where ∂/∂n stands for the inward normal derivative, Bn is the unit ball in Rn and Sn-1 is the unit sphere of Bn. The main aim of this paper is to discuss the Heinz–Schwarz type inequalities and the modulus of continuity of the solutions to the above inhomogeneous biharmonic Dirichlet problem.

关键词

非齐次双调和Dirichlet问题 / 连续模 / Heinz-Schwarz型不等式

Key words

inhomogeneous biharmonic Dirichlet problem / modulus of continuity / the Heinz-Schwarz type inequality

引用本文

导出引用
陈少林. 与双调和方程相关的连续模和Heinz-Schwarz型不等式. 数学学报, 2020, 63(5): 505-522 https://doi.org/10.12386/A2020sxxb0042
Shao Lin CHEN. Modulus of Continuity and Heinz-Schwarz Type Inequalities of Solutions to Biharmonic Equations. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 505-522 https://doi.org/10.12386/A2020sxxb0042

参考文献

[1] Arsenovi? M., Koji? V., Mateljevi? M., On Lipschitz continuity of harmonic quasiregular maps on the unit ball in Rn, Ann. Acad. Sci. Fenn. Math., 2008, 33:315-318.
[2] Axler S., Bourdon P., Ramey W., Harmonic Function Theory, Springer-Verlag, New York, 1992.
[3] Beardon A. F., The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
[4] Chen J., Huang M., Rasila A., et al., On Lipschitz continuity of solutions of hyperbolic Poisson's equation, Calc. Var. Partial. Differ. Equ., 2018, 57:1-32.
[5] Chen S., Li P. J., Wang X. T., Schwarz-type lemma, Landau-type theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations, J. Geom. Anal., 2019, 29:2469-2491.
[6] Chen S., Zhu J. F., Schwarz type lemmas and a Landau type theorem of functions satisfying the biharmonic equation, Bull. Sci. Math., 2019, 154:36-63.
[7] Dyakonov K. M., Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1997, 178:143-167.
[8] Dyakonov K. M., Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math., 2004, 187:146-172.
[9] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004.
[10] Gazzola F., Grunau H. C., Sweer G., Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010.
[11] Grunau H. C., Sweers G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 1997, 307:389-626.
[12] Gudmundsson S., Montaldo S., Ratto A., Biharmonic functions on the classical compact simple Lie groups, J. Geom. Anal., 2018, 28:1525-1547.
[13] Hayek S. I., Advanced Mathematical Methods in Science and Engineering, Marcel Dekker, 2000.
[14] Heinz E., On one-to-one harmonic mappings, Pacific J. Math., 1959, 9:101-105.
[15] Hethcote H. W., Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 1977, 8:65-67.
[16] Kalaj D., Pavlovi? M., On quasiconformal self-mappings of the unit disk satisfying Poisson's equation, Trans. Amer. Math. Soc., 2011, 363:4043-4061.
[17] Kalaj D., Vujadinovi? D., The gradient of a solution of the Poisson equation in the unit ball and related operators, Canad. Math. Bull., 2017, 60:536-545.
[18] Kalaj D., Heinz-Schwarz inequalities for harmonic mappings in the unit ball, Ann. Acad. Sci. Fenn. Math., 2016, 41:457-464.
[19] Kalaj D. A priori estimate of gradient of a solution of a certain differential inequality and quasiconformal mappings, J. Anal. Math., 2013, 119:63-88.
[20] Kalaj D., On the quasiconformal self-mappings of the unit ball satisfying the Poisson differential equations, Ann. Acad. Sci. Fenn. Math., 2011, 36:177-194.
[21] Khuri S. A., Biorthogonal series solution of Stokes flow problems in sectorial regions, SIAM J. Appl. Math., 1996, 56:19-39.
[22] Li P., Ponnusamy S., Presentation formula and bi-Lipschitz continuity of solutions to inhomogeneous biharmonic Dirichlet problems in the unit disk, J. Math. Anal. Appl., 2017, 456:1150-1175.
[23] Pavlovi? M., Introduction to Function Spaces on the Disk, Matemati?ki institut SANU, Belgrade, 2004.
[24] Pavlovi? M., On K. M., Dyakonov's paper:Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1999, 183:141-143.
[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Elementary Functions, 1, Gordon and Breach, New York, 1986.
[26] Strzelechi P., On biharmonic maps and their generalizations, Calc. Var. Partial. Differ. Equ., 2003, 18:401-432.
[27] Selvadurai A. P. S., Partial Differential Equations in Mechanics 2:The Biharmonic Equation, Poisson's Equation, Springer-Verlag, Berlin, 2000.
[28] Weisstein E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2002.
[29] Zygmund A., Trigonometrical Series, Chelsea Publishing Co., 2nd edition, New York, 1952.

基金

湖南省教育厅优秀青年基金项目(18B365);湖南省科技计划项目(2016TP1020);湖南省高等学校双一流应用特色学科"数学"(湘教通[2018]469);衡阳市科技计划项目(2018KJ125)

PDF(598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/