Zalcman引理在随机迭代函数族动力系统中的应用
An Application of Zalcman Lemma in Dynamical Systems of Random Iterated Function Families
本文根据Schwick的思想,利用Zalcman引理讨论了随机迭代函数族动力系统,指出了函数族随机迭代动力系统的Fatou集和函数族衍生半群动力系统的Fatou集定义差别明显但却等价.并获得了如下正规定则,设F={fi|fi为C(C)上的非线性解析函数,i ∈ M},其中M为非空指标集,ΣM={(j1,j2,…,jn,…)|ji ∈ M,i ∈ N},若对任意的指标序列σ=(j1,j2,…,jn,…)∈ ΣM,迭代序列{Wσn=fjn º fjn-1 º … ºfj1(z)|n ∈ N}在点z处正规,则函数族F本身在点z处正规.
In this paper, it studies the properties of dynamical systems about random iterated of function family based on the idea of Schwick and using the Zalcman lemma. It points out that the Fatou set's definition of random dynamics and the Fatou set's definitions of dynamics of semigroups of a function family are obviously different but equivalent. Furthermore, the following normal criterion is obtained. Let F= {fi|fi is a nonlinear analytic function on C (C), i ∈ M}, where M is non empty index set, ΣM = {(j1, j2, …, jn, …)|ji ∈ M, i ∈ N}, if for any index sequence σ = (j1, j2, …, jn, …) ∈ ΣM, the iterative sequence {Wσn = fjn º fjn-1 º … º fj1(z)|n ∈ N} is normal at point z, then the function family F is also normal at point z.
随机动力系统 / 半群动力系统 / Julia集 / 排斥周期点 / 正规族 {{custom_keyword}} /
random dynamics / dynamics of semigroups / Julia set / repulsive periodic point / normal family {{custom_keyword}} /
[1] Baker I. N., Repulsive fixedpoints of entire functions, Math. Zeit., 1968, 104:252-256.
[2] Bargmann D., Simple proofs of some fundamental properties of the Julia set, Ergod. Th.& Dynam. Sys., 1999, 19:553-558.
[3] Bergweiler W., Iteration of meromorphic functions, Bulletin of the American Mathematical Society, 1993, 29(2):151-189.
[4] Fatou P., Sur les é quations fonctionnelles (in French), Bull. Soc. Math. France, 1920, 48:208-314.
[5] Gong Z. M., Ren F. Y., A random dynamical system formed by infinitely many functions, J. Fudan University, 1996, 35:387-392.
[6] Gu Y. X., Pang X. C., Fang M. L., The Theory of Normal Family and Its Application (in Chinese), Science Press, Beijing, 2007.
[7] Hinkkanen A., Martin G. J., The dynamics of semigroups of rational functions I, Proc. London Math. Soc., 1996, 73(3):358-384.
[8] Hinkkanen A., Martin G. J., Julia Sets of Rational Semigroups, Math. Z., 1996, 222(2):161-169.
[9] Jaerisch J., Sumi H., Dynamics of infinitely generated nicely expanding rational semigroups and the inducing method, Transactions of the American Mathematical Society, 2017, 369(9):6147-6187.
[10] Julia G., Memoire sur l'tération des fonctions rationnelles (in French), J. Math. Pure Appl., 1918, 8:47-245.
[11] Kriete H., Sumi H., Semihyperbolic transcendental semigroups, Journal of Mathematics of Kyoto University, 2000, 40(2):205-216.
[12] Ren F. Y., Qiu W. Y., Yin Y. C., et al., Complex Analytic Dynamical System (in Chinese), Fudan University Press, Shanghai, 1997.
[13] Schwick W., Repelling periodic points in the Julia set, Bulletin of the London Mathematical Society, 1997, 29(3):314-316.
[14] Stankewitz R., Density of repelling fixed points in the Julia set of a rational or entire semigroup, Journal of Difference Equations and Applications, 2010, 16(5-6):763-771.
[15] Stankewitz R., Density of repelling fixed points in the Julia set of a rational or entire semigroup II, Discrete and Continuous Dynamical Systems A, 2012, 32(7):2583-2589.
[16] Sumi H., Random complex dynamics and semigroups of holomorphic maps, Proceedings of the London Mathematical Society, 2011, 102(1):50-112.
[17] Yang L., Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.
[18] Zalcman L., A heuristic principle in complex function theory, American Mathematical Monthly, 1975, 82(8):813-817.
[19] Zhou W. M., Ren F. Y., Julia set of stochastic iterative system of transcendental entire functions (in Chinese), Chinese Science Bulletin, 1993, 38(4):289-289.
国家自然科学基金资助项目(11671091,11731003);江西省教育厅科技项目(GJJ180944,GJJ190963)
/
〈 | 〉 |