
多复变Pang-Zalcman引理及应用
Pang-Zalcman Lemma of Several Complex Variables and Its Applications
单复变中的Pang-Zalcman引理是研究亚纯函数正规族问题的重要工具.本文将该引理推广至多复变全纯函数的情形.作为应用建立了多复变全纯函数族的正规定则,改进和推广了相关结果.
The Pang-Zalcman lemma is an important tool to study normal families of meromorphic functions. In this paper, we extend Pang-Zalcman lemma to the case of holomorphic functions of several complex variables and establish some normality criteria as applications.
正规族 / 多复变全纯函数 / 球面导数 {{custom_keyword}} /
normal family / holomorphic functions of several complex variables / spherical derivative {{custom_keyword}} /
[1] Aladro G., Krantz S. G., A criterion for normality in Cn, J. Math. Anal. Appl., 1991, 161:1-8.
[2] Alexander H., Volumes of images of varieties in projective space and in Grassmannians, Trans. Amer. Math. Soc., 1974, 189:237-237.
[3] Bergweiler W., Bloch's Principle, Computational Methods & Function Theory, 2006, 6(1):77-108.
[4] Chen H. H., Gu Y. X., An improvement of Marty's criterion and its applications, Sci. China Ser. A, 1993, 36:674-681.
[5] Dovbush P. V., On a normality criterion of Mandelbrojt, Complex Var. Elliptic Equ., 2014, 59(10):1388-1394.
[6] Dovbush P. V., Zalcman's lemma in Cn, Complex Var. Elliptic Equ., 2020, 65(5):796-800.
[7] Grahl J., Nevo S., Spherical derivatives and normal families, J. Anal. Math, 2012, 117(1):119-128.
[8] Gu Y. X., Pang X. C., Fang M. L., Normal Family Theory and Its Application, Scinece Press, Beijing, 2007.
[9] Gul S., Nevo S., Creating limit functions by the Pang-Zalcman lemma, Kodai Math. J., 2012, 35(10):283-310.
[10] Li S. Y., Xie H. C., On normal families of meromorphic functions. Acta Math. Sinica, Chin. Series 1986, 29(4):468-476.
[11] Nevo S., Applications of Zalcman's lemma to Qm-normal families, Analysis, 2001, 21:289-325.
[12] Pang X. C., Bloch's principle and normal criterion, Science in China, Ser. A, 1989, 32(7):782-791.
[13] Pang X. C., On normal criterion of meromorphic functions, Science in China, Ser. A, 1990, 33(5):521-527.
[14] Pang X. C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 2000, 32:325-331.
[15] Schwick W., Normality criteria for families of meromorphic functions, J. Analyse Math., 1989, 52:241-289.
[16] Schiff J. L., Normal Families, Universitext, Springer, New York, 1993.
[17] Shi J. H., Function Theory of Several Complex Variables, Higher Education Press, Beijing, 1996.
[18] Steinmetz N., Nevanlinna Theory, Normal Families, and Algebraic Differential Equations, Springer, New York, 2017.
[19] Zalcman L., A heuristic principle in complex function theory, Amer. Math. Monthly, 1975, 82(8):813-818.
[20] Zalcman L., Normal families:new perspectives, Bull. Amer. Math. Soc., 1998, 35:215-230.
[21] Zhang S. S., Tu Z. H., Normal families of holomorphic mappings of several complex variables into P1(C) Acta Math. Sinica, Chin. Series, 2010, 53(6):1045-1050.
国家自然科学基金资助项目(11701006,11871216);安徽省自然科学基金资助项目(1808085QA02)
/
〈 |
|
〉 |