
一类基于量子程序理论的序列效应代数
A Sub-sequential Effect Algebra from the Quantum Programming Theory
空间上的算子理论是量子力学的基本数学框架之一.Hilbert空间效应代数是指小于等于单位算子的正算子集合.我们引入了Hilbert空间效应代数的一类子序列效应代数,并讨论了其上序列积的基本运算性质.我们发现:由于代数结构的不同,这类新的序列效应代数与现有效应代数上的运算性质有很大差异.
The theory of operators on Hilbert spaces is one of fundamental frameworks of quantum mechanics. Hilbert space effect algebra, which is the convex set of positive operators between 0 and the identity, is one of important aspects in quantum mechanics. In the paper, we introduce a kind of sub-sequential effect algebra and explore some algebraic properties of the sequential product on it. We show that these properties on the sub-sequential effect algebra is different from those of existing ones.
序列效应代数 / Hilbert空间上的算子 / 量子程序 {{custom_keyword}} /
sequential effect algebra / operators on Hilbert spaces / quantum programming {{custom_keyword}} /
[1] Gudder S., Compression bases in effect algebras, Demonstratio Mathematica, 2006, 39(1):43-54.
[2] Gudder S., Open problems for sequential effect algebras, Int. J. Theor. Phys., 2005, 44(12):2199-2206.
[3] Gudder S., Tensor products of sequential effect algebras, Math. Slovaca, 2004, 54(1):1-11.
[4] Gudder S., Greechie R., Sequential products on effect algebras, Rep. Math. Phys., 2002, 49(1):87-111.
[5] Gudder S., Greechie R., Uniqueness and order in sequential effect algebras, Int. J. Theor. Phys., 2005, 44(7):755-770.
[6] Gudder S., Nagy G., Sequential quantum measurements, J. Math. Phys., 2001, 42(11):5212-5222.
[7] Lei Q., Su X., Wu J., Continuity of the sequential product of sequential quantum effect algebras, J. Math. Phys., 2016, 57(4):043501(7 pages).
[8] Liu W., Wu J., A uniqueness problem of the sequence product on operator effect algebra E (H), J. Phys. A:Math. Theor., 2009, 42(18):185206(10 pages).
[9] Ludwig G., Foundations of Quantum Mechanics, Vol. I, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
[10] Shen J., Wu J., Remarks on the sequential effect algebras, Rep. Math. Phys., 2009, 63(3):441-446.
[11] Shen J., Wu J., Sequential product on standard effect algebra E (H), J. Phys. A:Math. Theor., 2009, 42(34):345203(12 pages).
[12] Wigner E. P., Group Theory:and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, London, 1959.
[13] Ying M., Floyd-Hoare logic for quantum programs, ACM T. Progr. Lang. Sys., 2011, 33(6):art. 19(49 pages).
[14] Ying M., Foundations of Quantum Programming, Morgan Kaufmann, San Francisco, 2016.
[15] Ying M., Yu N., Feng Y., et al., Verification of quantum programs, Sci. Comput. Program., 2013, 78(9):1679-1700.
国家自然科学基金资助项目(11771011);山西省自然科学基金资助项目(201701D221011)
/
〈 |
|
〉 |