某些子群介于正规与反正规之间的有限群

郭鹏飞, 石化国

数学学报 ›› 2022, Vol. 65 ›› Issue (5) : 841-848.

PDF(398 KB)
PDF(398 KB)
数学学报 ›› 2022, Vol. 65 ›› Issue (5) : 841-848. DOI: 10.12386/A20210001
论文

某些子群介于正规与反正规之间的有限群

    郭鹏飞1, 石化国2
作者信息 +

Finite Groups in Which Certain Subgroups are Between Normal and Abnormal

    Peng Fei GUO1, Hua Guo SHI2
Author information +
文章历史 +

摘要

有限群G的子群H称为G的BNA子群,若对任意的xGHx=HxHHx.若有限群G的所有素数阶和4阶循环子群都是G的BNA子群,则称G为CBNA群.本文主要刻画CBNA群的结构,并且给出所有真子群都是CBNA群的完全分类.

Abstract

A subgroup H of a finite group G is a BNA-subgroup of G if either Hx=H or xH,Hx for all xG. A finite group G is called a CBNA-group if its all cyclic subgroups of order prime or 4 are BNA-subgroups of G. The main aim of this paper is to investigate the structure of CBNA-groups, and the groups whose all proper subgroups are CBNA-groups are classified completely.

关键词

BNA子群 / 极小子群 / 循环子群 / 超可解群 / CBNA群

Key words

BNA-subgroups / minimal subgroups / cyclic subgroups / supersolvable groups / CBNA-groups

引用本文

导出引用
郭鹏飞, 石化国. 某些子群介于正规与反正规之间的有限群. 数学学报, 2022, 65(5): 841-848 https://doi.org/10.12386/A20210001
Peng Fei GUO, Hua Guo SHI. Finite Groups in Which Certain Subgroups are Between Normal and Abnormal. Acta Mathematica Sinica, Chinese Series, 2022, 65(5): 841-848 https://doi.org/10.12386/A20210001

参考文献

[1] Asaad M., Ballester-Bolinches A., Pedraza Aguilera M. C., A note on minimal subgroups of finite groups, Comm. Algebra, 1996, 24(8):2771-2776.
[2] Ba M. S., Borevich Z. I., On Arrangement of Intermediate Subgroups, In:Rings and Linear Groups, Kubanskij University, Krasnodar, 1988, 14-41.
[3] Ballester-Bolinches A., Esteban-Romero R., On minimal non-supersoluble groups, Rev. Mat. Iberoam., 2007, 23(1):127-142.
[4] Doerk K., Minimal nichtuberauflösbare, endliche Gruppen, Math. Z., 1966, 91(3):198-205.
[5] Guo P. F., Ge R. F., Zhang X. H., On minimal non-PN*-groups, Adv. Math. (China), 2013, 42(1):41-46.
[6] He X. L., Li S. R., Wang Y. M., Groups all cyclic subgroups of which are BNA-subgroups, Ukrainian Math. J., 2017, 69(2):331-336.
[7] He X. L., Li S. R., Wang Y. M., On BNA-normality and solvability of finite groups, Rend. Sem. Mat. Univ. Padova, 2016, 136:51-60.
[8] Huppert B., Blackburn N., Finite Groups III, Springer-Verlag, Berlin, 1982.
[9] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[10] Laffey T. J., A Lemma on finite p-group and some consequences, Math. Proc. Camb. Phil. Soc., 1974, 75(2):133-137.
[11] Robinson D. J. S., A Course in the Theory of Groups, Springer-Verlag, New York, 1980.
[12] Sastry N. S. N., On minimal non-PN-groups, J. Algebra, 1980, 65(1):104-109.

基金

国家自然科学基金资助项目(12061030,11661031);海南省自然科学基金资助项目(119MS039)
PDF(398 KB)

861

Accesses

0

Citation

Detail

段落导航
相关文章

/