加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子
Commutators of Bilinear Hardy Operators on Weighted Herz–Morrey Spaces with Variable Exponents
本文利用权范数给出BMO函数的一个新刻画.作为此刻画的一个应用,获得了双线性Hardy算子和BMO函数生成的交换子在加权变指标Herz-Morrey乘积空间上的有界性.
We give a novel characterization of BMO functions via weighted norm. As an application, we obtain the boundedness of commutators generated by bilinear Hardy operator and BMO functions on products of weighted Herz-Morrey spaces with variable exponents.
Hardy算子 / 交换子 / Muckenhoupt权 / 变指标 / Herz-Morrey空间 {{custom_keyword}} /
Hardy operator / commutator / Muckenhoupt weight / variable exponent / Herz-Morrey space {{custom_keyword}} /
[1] Almeida A., Drihem D., Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 2012, 394(2):781-795.
[2] Almeida A., Hasanov J., Samko S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 2008, 15(2):195-208.
[3] Almeida A., Hästö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258(5):1628-1655.
[4] Christ M., Grafakos L., Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 1995, 123(6):1687-1693.
[5] Cruz-Uribe D., Diening L., Fiorenza A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital., 2009, 2(1):151-173.
[6] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces, Birkhauser, Basel, 2013.
[7] Cruz-Uribe D., Fiorenza A., Martell J. M., et al., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31(1):239-264.
[8] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 2012, 394(2):744-760.
[9] Cruz-Uribe D., Wang L. A. D., Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 2017, 369(2):1205-1235.
[10] Diening L., Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl., 2004, 7(2):245-253.
[11] Diening L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 2005, 129(8):657-700.
[12] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.
[13] Diening L., Harjulehto P., Hästö P., et al., Maximal functions in variable exponent spaces:limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math., 2009, 34(1):503-522.
[14] Diening L., Hästö P., Roudenko S., Function spaces of variable smoothness and integrability, J. Funct. Anal., 2009, 256(6):1731-1768.
[15] Diening L., Samko S., Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 2007, 167(10):2479-2486.
[16] Dong B., Xu J., New Herz type Besov and Triebel-Lizorkin spaces with variable exponents, J. Funct. Spaces Appl., 2012, 2012, Article ID 384593, 27 pp.
[17] Drihem D., Some characterizations of variable Besov-type spaces, Ann. Funct. Anal., 2015, 6(4):255-288.
[18] Drihem D., Some properties of variable Besov-type spaces, Funct. Approx. Comment. Math., 2015, 52(2):193-221.
[19] Drihem D., Heraiz R., Herz-type Besov spaces of variable smoothness and integrability, Kodai Math. J., 2017, 40(1):31-57.
[20] Faris W., Week Lebesgue spaces and quantum mechanical binding, Duke Math. J., 1967, 43(2):365-373.
[21] Grafakos L., Modern Fourier Analysis, Springer, New York, 2014.
[22] Gurka P., Harjulehto P., Nekvinda A., Bessel potential spaces with variable exponent, Math. Inequal. Appl., 2007, 10(3):661-676.
[23] Hardy G. H., Note on a theorem of Hilbert, Math Z., 1920, 6(3):314-317.
[24] Harjulehto P., Hasto P., Koskenoja M., Hardy's inequality in a variable exponent Sobolev space, Georgian Math. J., 2005, 12(3):431-442.
[25] Huang A., Xu J., Multilinear singular integral and commutators in variable exponent Lebesgue space, Appl. Math. J. Chinese Univ. Ser. B, 2010, 25(1):69-77.
[26] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 2010, 59(2):199-213.
[27] Izuki M., Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 2009, 13(10):243-253.
[28] Izuki M., Fractional integrals on Herz-Morrey space with variable exponents, Hiroshima Math. J., 2010, 40(3):343-355.
[29] Izuki M., Noi T., Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016, 2016(1):199.
[30] Izuki M., Noi T., An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 2016, 11(3):799-816.
[31] Izuki M., Noi T., Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 2020, 43:169-200.
[32] Ková?ik O., Rákosník J., On space Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41(4):592-618.
[33] Li X., Yang D., Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 1996, 40(3):484-501.
[34] Lu S., Yang D., Hu G., Herz Type spaces and Their Applications, Science Press, Beijing, 2008.
[35] Lu Y., Zhu Y., Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz space with variable exponent, Acta Math. Sin. Engl. Ser., 2014, 30(7):1180-1194.
[36] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165:207-226.
[37] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262(9):3665-3748.
[38] Nekvinda A., Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl., 2004, 7(2):255-266.
[39] Samko S., Hardy inequality in the generalized Lebesgue spaces, Fract. Calc. Appl. Anal., 2003, 6(4):355-362.
[40] Sawano Y., Theory of Besov Spaces, Springer, Singapore, 2018.
[41] Shu L., Wang M., Qu M., Commutators of Hardy type operators on Herz spaces with variable exponents, Acta Math. Sinica, Chinese Series, 2015, 58(1):29-40.
[42] Wu J., Boundedness of multilinear commutators of fractional Hardy operators, Acta Math. Sci. Ser. A Chin. Ed., 2011, 31(4):1055-1062.
[43] Wu J., Boundedness for fractional Hardy-type operator on Herz-Morrey spaces with variable exponent, Bull. Korean Math. Soc., 2014, 51(2):423-435.
[44] Wu J., Liu Q., λ-central BMO estimates for higher order commutators of Hardy operators, Commun. Math. Res., 2014, 30(3):201-206.
[45] Wu J., Zhang P., Boundedness of multilinear Hardy type operators on the product of Herz-Morrey spaces with variable exponent, Appl. Math. J. Chinese Univ. Ser. A, 2013, 28(2):154-164.
[46] Zhang P., Wu J., Boundedness of commutators of fractional Hardy operators on Herz-Morrey spaces with variable exponent (in Chinese), Adv. Math., 2014, 43(4):581-589.
[47] Wu J., Zhao W., Boundedness for fractional Hardy-type operator on variable exponent Herz-Morrey spaces, Kyoto J. Math., 2016, 56(4):831-845.
[48] Wu S., Yang D., Yuan W., et al., Variable 2-microlocal Besov-Triebel-Lizorkin-type spaces, Acta Math. Sin. Engl. Ser., 2018, 34(4):699-748.
[49] Xu J., Variable Besov spaces and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fen. Math., 2008, 33:511-522.
[50] Xu J., Yang X., Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 2018, 25(1):135-148.
[51] Yang D., Zhuo C., Yuan W., Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 2015, 9(4):146-202.
[52] Yang D., Zhuo C., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269(6):1840-1898.
[53] Zhuo C., Chang D., Yang D., et al., Characterizations of variable Triebel-Lizorkin-type spaces via ball averages, J. Nonlinear Convex Anal., 2018, 19(1):19-40.
国家自然科学基金资助项目(11761026);海南省自然科学基金资助项目(2018CXTD338)
/
〈 | 〉 |