
临界或超临界增长分数阶Schrödinger—Poisson方程正解的存在性
王文波, 周见文, 李永昆, 李全清
数学学报 ›› 2021, Vol. 64 ›› Issue (2) : 269-280.
临界或超临界增长分数阶Schrödinger—Poisson方程正解的存在性
Existence of Positive Solutions for Fractional Schrödinger-Poisson System with Critical or Supercritical Growth
本文研究如下分数阶Schrödinger—Poisson方程
其中s ∈(4/3,1),t ∈(0,1),f是在原点超线性无穷远次临界的连续非线性项,指数q ≥ 2s*=(3-2s)/6.当λ>0充分小时,我们利用变分方法证明上述问题正解的存在性.本文的主要贡献是处理了超临界情形.
We study the following fractional Schrödinger-Poisson system
where s ∈ (4/3, 1), t ∈ (0, 1), the continuous function f is superlinear at zero and subcritical at infinity and the exponent q ≥ 2s*=(3-2s)/6. We obtain a positive solution of the above problem for small λ > 0 via the variational method. Our main contribution is that we can deal with the supercritical case.
分数阶Schrö / dinger&mdash / Poisson方程 / 临界或超临界增长 / Moser迭代 {{custom_keyword}} /
fractional Schrö / dinger-Poisson system / critical or supercritical growth / Moser iteration {{custom_keyword}} /
[1] Alves C., Soare S., Souto M., Schrödinger-Poisson equations with supercritical growth, Electron. J. Differential Equations, 2011, 1:11 pp.
[2] Ambrosio V., Multiplicity and concentration results for a fractional Choquard equation via penalization method, Potential Anal., 2019, 50:55-82.
[3] Bertoin J., Lévy Processes, Cambridge Tracts in Mathematics, Vol. 121, Cambridge University Press, Cambridge, 1996.
[4] Bisci G. M., Radulescu V., Servadei R., Variational Methods for Nonlocal Fractional Problems, Encyslopedia of Mathematics and Its Application, Vol. 162. Cambridge University Press, Cambridge, 2016.
[5] Bucur C., Valdinoci E., Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, Springer, Unione Matematica Italiana, Bologna, 2016.
[6] Chen W., Li Y., Ma P., The Fractional Laplacian, Lecture Notes in 2017.
[7] del Pino M., Felmer P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 1996, 4:121-137.
[8] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 2012, 136:521-573.
[9] Felmer P., Quass A., Tang J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142:1237-1262.
[10] Giammetta A. R., Fractional Schrödinger-Poisson-Slater system in one dimension, 2014, arXiv:1405.2796v1.
[11] Laskin N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 2000, 268:298-305.
[12] Li Q., Teng K., Wu X., et al., Existence of nontrivial solutions for fractional Schrödinger equations with critical or supercritical growth, Math. Meth. Appl. Sci., 2019, 42:1480-1487.
[13] Liu W., Existence of multi-bump solutions for the fractional Schrödinger-Poisson system, J. Math. Phys. 2016, 57:091502.
[14] Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.
[15] Stein E., Shakarchi R., Fourier Analysis, Princeton Lectures in Analysis, Vol. 1, Princeton University Press, Princeton, 2003.
[16] Teng K., Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261:3061-3106.
[17] Wang W., Yu Y., Li Y., On the asymptotically cubic fractional Schrödinger-Poisson system, Appl. Anal., 2019, DOI:10.1080/00036811.2019.1616695.
[18] Zhao L., Zhao F., Positive solutions for Schrödinger-Poisson equations with critical exponent, Nonlinear Anal., 2009, 70:2150-2164.
国家自然科学基金资助项目(11901514,11861072,11961078,11561072,11801153)
/
〈 |
|
〉 |