经典高斯和及它们的一些递推性质

徐小玲, 张佳凡

数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 479-484.

PDF(359 KB)
PDF(359 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 479-484. DOI: 10.12386/A2021sxxb0041
论文

经典高斯和及它们的一些递推性质

    徐小玲1, 张佳凡2
作者信息 +

A Certain Classical Gauss Sums and Some of Their Recursive Properties

    Xiao Ling XU1, Jia Fan ZHANG2
Author information +
文章历史 +

摘要

本文利用解析方法及经典高斯和的性质研究了某些特殊对称高斯和的计算问题,并给出了一些新的恒等式及其二阶线性递推公式.

Abstract

We use analytic methods and properties of the classical Gauss sums to study the computational problems of some certain special symmetric Gauss sums, and give some new and interesting identities and second-order linear recurrence formulae for them.

关键词

特征 / 对称高斯和 / 恒等式 / 二阶线性递推公式

Key words

character / symmetric Gauss sums / identity / second-order linear recurrence formula

引用本文

导出引用
徐小玲, 张佳凡. 经典高斯和及它们的一些递推性质. 数学学报, 2021, 64(3): 479-484 https://doi.org/10.12386/A2021sxxb0041
Xiao Ling XU, Jia Fan ZHANG. A Certain Classical Gauss Sums and Some of Their Recursive Properties. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 479-484 https://doi.org/10.12386/A2021sxxb0041

参考文献

[1] Apostol Tom M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Bai H., Hu J. Y., On the classical Gauss sum and the recursive properties, Advances in Difference Equations, 2018, 2018:387.
[3] Berndt B. C., Evans R. J., Sums of Gauss, Jacobi, and Jacobsthal, Journal of Number Theory, 1979, 11:349-389.
[4] Berndt B. C., Evans R. J., The determination of Gauss sums, Bulletin of the American Mathematical Society, 1981, 5:107-128.
[5] Chen L., On the classical Gauss sums and their some properties, Symmetry, 2018, 10:625.
[6] Chen L., Hu J. Y., A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums, Acta Mathematica Sinica, Chinese Series, 2018, 61:67-72.
[7] Chen Z. Y., Zhang W. P., On the fourth-order linear recurrence formula related to classical Gauss sums, Open Mathematics, 2017, 15:1251-1255.
[8] Chowla S., Cowles J., Cowles M., On the number of zeros of diagonal cubic forms, Journal of Number Theory, 1977, 9:502-506.
[9] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
[10] Kim T., Dolgy D. V., Kim D. S., Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials, Advanced Studies in Contemporary Mathematics, 2018, 28:321-336.
[11] Kim T., Kim D. S., Dolgy D. V., et al., Sums of finite products of Chebyshev polynomials of the third and fourth kinds, Advances in Difference Equations, 2018, 2018:283.
[12] Kim T., Kim D. S., Dolgy D. V., et al., Representation by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first, third and fourth kinds, Advances in Difference Equations, 2019, 2019:110.
[13] Kim T., Kim D. S., Jang L. C., et al., Representing by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials, Advances in Difference Equations, 2019, 2019:162.
[14] Pan C. D., Pan C. B., Goldbach Conjecture (in Chinese), Science Press, Beijing, 1992.
[15] Ren G. L., He D. D., Zhang T. P., On general partial Gaussian sums, J. Inequal. Appl., 2016, 2016:295.
[16] Shen S. M., Zhang W. P., On the quartic Gauss sums and their recurrence property, Advances in Difference Equations, 2017, 2017:43.
[17] Wang T. T., Chen G. H., A note on the classical Gauss sums, Mathematics, 2018, 6:313.
[18] Zhang W. P., Hu J. Y., The number of solutions of the diagonal cubic congruence equation mod p, Mathematical Reports, 2018, 20:73-80.

基金

国家自然科学基金项目(11771351);陕西省教育厅2019年度专项科学研究计划(19JK0978)

PDF(359 KB)

Accesses

Citation

Detail

段落导航
相关文章

/