Fock空间上对偶Toeplitz算子的交换性
Commuting Dual Toeplitz Operators on the Orthogonal Complement of the Fock Space
本文研究了Fock空间的正交补空间上由有界可测函数诱导的对偶Toeplitz算子的交换性,刻画出两个对偶Toeplitz算子交换的充分必要条件,并且给出了关于对偶Toeplitz算子上的Brown-Halmos定理.
We characterize commuting dual Toeplitz operators with bounded measurable symbols on the orthogonal complement of the Fock space, giving the necessary and sufficient conditions. Moreover, we give a Brown-Halmos Theorem for dual Toeplitz operators.
对偶Toeplitz算子 / Fock空间 / 交换性 / Brown-Halmos定理 {{custom_keyword}} /
dual Toeplitz operator / Fock space / commuting conditions / Brown-Halmos theorem {{custom_keyword}} /
[1] Ahern P., ?u?kovi? ?., A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal., 2001, 187:200-210.
[2] Axler S., ?u?kovi? ?., Commuting Toeplitz operators with harmonic symbols, Integr. Equat. Oper. Th., 1991, 14:1-12.
[3] Brown A., Halmos P., Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 1964, 213:89-102.
[4] Chen Y., Yu T., Essentially commuting dual Toeplitz operators on the unit ball, Adv. Math. China, 2009, 38(4):453-464.
[5] Cheng G. Z., Yu T., Dual Toeplitz algebra on the polydisk, J. Math. Res. Exposition, 2008, 28(2):366-370.
[6] Coburn L. A., Isralowitz J., Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 2011, 363:3015-3011.
[7] ?u?ukoi? ?., Rao N. V., Mellin transform, monomial symbols and commuting Toeplitz operators, J. Func. Anal., 1998, 154:195-214.
[8] Guediri H., Dual Toeplitz operators on the sphere, Acta Math. Sin., Engl. Series, 2013, 29(9):1791-1808.
[9] Isralowitz J., Zhu K. H., Toeplitz operators on the Fock space, Integral Equations and Operator Theory, 2010, 66:599-611.
[10] Stroethoff K., Hankel and Toeplitz operators on the Fock space, The Michigan Mathematical Journal, 1992, 1:3-16.
[11] Stroethoff K., Zheng D., Algebric and spectral properties of dual Toeplitz operators, Trans. Amer. Math. Soc., 2002, 354(6):2495-2520.
[12] Yu T., Operators on the orthogonal complement of the Dirichlet space, J. Math. Anal. Appl., 2009, 357(1):300-306.
[13] Yu T., Wu S. Y., Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space, Acta Math. Sin., Engl. Series, 2008, 24(11):1843-1852.
[14] Zhu K. H., Analysis on Fock Space, Springer, New York, 2012.
国家自然科学基金资助项目(11871127);重庆市科委科研项目(CSTC2019JCYJ-MSXM0295);重庆师范大学数学科学学院重点实验室开放课题(CSSXKFKTM202002)
/
〈 | 〉 |