具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解

刘佳

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 587-600.

PDF(499 KB)
PDF(499 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 587-600. DOI: 10.12386/A2021sxxb0051
论文

具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解

    刘佳
作者信息 +

Cylindrically Symmetric Traveling Fronts for Nonlocal Delayed Diffusion Equation with Bistable Nonlinearity

    Jia LIU
Author information +
文章历史 +

摘要

本文研究了非局部时滞扩散方程柱状对称波前解的存在性和定性性质.最近,非局部时滞扩散方程的V形行波解和棱锥形行波解已经有了研究结果.利用棱锥形波前解序列的极限,我们建立了柱状对称波前解的存在性和定性性质,也证明了其水平集的渐近行为和柱状对称行波解的不存在性.

Abstract

This paper is concerned with the existence and qualitative properties of cylindrically symmetric traveling fronts for nonlocal delayed diffusion equations. Recently, the existence and stability of V-shaped traveling fronts and pyramidal traveling fronts for nonlocal delayed diffusion equation have been established. Using the limit of a sequence of pyramidal traveling fronts, we establish the existence and qualitative properties of cylindrically symmetric traveling fronts. Moreover, the asymptotic behaviors of level set and the nonexistence of the cylindric symmetric traveling are also proved.

关键词

非局部时滞扩散方程 / 双稳非线性项 / 柱状对称波前解

Key words

nonlocal delayed diffusion equation / bistable nonlinearity / cylindrically symmetric traveling fronts

引用本文

导出引用
刘佳. 具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解. 数学学报, 2021, 64(4): 587-600 https://doi.org/10.12386/A2021sxxb0051
Jia LIU. Cylindrically Symmetric Traveling Fronts for Nonlocal Delayed Diffusion Equation with Bistable Nonlinearity. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 587-600 https://doi.org/10.12386/A2021sxxb0051

参考文献

[1] Aronson D. G., Weinberger H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 1978, 30:33-76.
[2] Bao X., Huang W. H., Traveling curved front of bistable reaction-diffusion equations with delay, E. J. Differential Equations, 2015, 252:1-17.
[3] Bao X., Liu J., Pyramidal traveling fronts in a nonlocal delayed diffusion equation, J. Math. Anal. Appl., 2018, 463:294-313.
[4] Bao X., Wang Z. C., Pyramidal traveling front of bistable reaction-diffusion equations with delay, Ann. of Diff. Eqs., 2014, 30:127-136.
[5] Bao X., Li W. T., Wang Z. C., Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 2020, 19:253-277.
[6] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 1999, 31:80-118.
[7] Bu Z. H., Wang Z. C., Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 2016, 15:139-160.
[8] Faria T., Huang W., Wu J., Traveling waves for delayed reaction diffusion equations with nonlocal reponse, Proc. R. Soc. Lond. Ser. A, 2006, 462:229-261.
[9] Gibarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
[10] Gourley S. A., Ruan S., Convergence and travelling fronts in functional differential equations with nonlocal terms:a competition model, SIAM J. Math. Anal., 2003, 35:806-822.
[11] Gourley S. A., So J. H. W., Wu J., Non-locality of reaction-diffusion equations induced by delay:biological modeling and nonlinear dynamics, J. Math. Sci., 2004, 124:5119-5153.
[12] Hamel F., Monneau R., Roquejoffre J. M., Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 2005, 13:1069-1096.
[13] Hamel F., Monneau R., Roquejoffre J. M., Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 2006, 14:75-92.
[14] Kurokawa Y., Taniguchi M., Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 2011, 141:1031-1054.
[15] Ma S., Wu J., Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dynam. Differential Equations, 2007, 19:391-436.
[16] Liu J., Asymptotic stability of pyramidal traveling front for nonlocal delayed diffusion equation, submitted.
[17] Ninomiya H., Taniguchi M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 2005, 213:204-233.
[18] Ninomiya H., Taniguchi M., Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 2006, 15:819-832.
[19] Sheng W. J., Li W. T., Wang Z. C., Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 2012, 252:2388-2424.
[20] Sheng W. J., Li W. T., Wang Z. C., Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 2013, 56:1969-1982.
[21] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in RN, Applied Mathematics Letters, 2016, 54:22-30.
[22] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in R3, Annali di Matematica, 2017, 196:617-639.
[23] So J. W. H., Wu J., Zou X., A reaction-diffusion model for a single species with age structure. I. Traveling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 2001, 457:1841-1853.
[24] Taniguchi M., Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 2007, 39:319-344.
[25] Taniguchi M., The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 2009, 246:2103-2130.
[26] Taniguchi M., Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 2012, 32:1011-1046.
[27] Taniguchi M., An (N - 1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 2015, 47:455-476.
[28] Taniguchi M., Convex compact sets in RN-1 give traveling fronts of cooperative-diffusion system in RN, J. Differential Equations, 2016, 260:4301-4338.
[29] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2019, 36:1791-1816.
[30] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Doi:10.3934/dcds.2020126.
[31] Wang Z. C., Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 2012, 32:2339-2374.
[32] Wang Z. C., Li W. T., Ruan S., Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 2007, 238:153-200.
[33] Wang Z. C., Li W. T., Ruan S., Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 2009, 361:2047-2084.
[34] Wang Z. C., Wu J., Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 2011, 250:3196-3229.
[35] Wang Z. C., Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 2015, 145:1053-1090.
[36] Wang Z. C., Bu Z. H., Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 2016, 260:6405-6450.
[37] Wang Z. C., Li W. T., Ruan S., Existence, uniqueness and stability of pyramidal traveling fronts in bistable reaction-diffusion systems, Sci. China Math., 2016, 59:1869-1908.
[38] Wu J., Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119, Springer-Verlag, New York. 1996.

基金

国家自然科学基金(11701041);长安大学中央高校基本科研业务费专项资金(300102129201)

PDF(499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/