Fq[T]上多元算术函数的Ramanujan展开

齐田芳

数学学报 ›› 2022, Vol. 65 ›› Issue (5) : 891-906.

PDF(458 KB)
PDF(458 KB)
数学学报 ›› 2022, Vol. 65 ›› Issue (5) : 891-906. DOI: 10.12386/A20210053
论文

Fq[T]上多元算术函数的Ramanujan展开

    齐田芳
作者信息 +

Ramanujan Expansions of Arithmetic Functions of Several Variables over Fq[T]

    Tian Fang QI
Author information +
文章历史 +

摘要

从1976年到2017年,Wintner,Delange,Ushiroya和Tóth逐步证明了定义在整数环上的多元算术函数都可以通过Ramanujan和加以展开.这类似于经典分析中周期函数的Fourier展开.本文主要研究了有限域上一元多项式环Fq[T]上Ramanujan和的性质,并证明了定义在Fq[T]上的多元算术函数也可以通过多项式Ramanujan和以及酉多项式Ramanujan和加以展开.

Abstract

Combing Wintner, Delange, Ushiroya and Tóth's works from 1976 to 2017, we have that the multi-variable arithmetic functions defined on integer ring can be expanded through the Ramanujan sums. This is an analogue of the Fourier expansion for periodic functions in the classical analysis. In this paper we further investigate the properties of Ramanujan sums in the polynomial ring Fq[T], and show that the multi-variable arithmetic functions defined on Fq[T] can also be expanded through the polynomial Ramanujan sums and the unitary polynomial Ramanujan sums.

关键词

算术函数 / Ramanujan和 / 多项式环 / 有限域 / Zeta函数

Key words

arithmetic function / Ramanujan sum / polynomial ring / finite fields / Zeta function

引用本文

导出引用
齐田芳. Fq[T]上多元算术函数的Ramanujan展开. 数学学报, 2022, 65(5): 891-906 https://doi.org/10.12386/A20210053
Tian Fang QI. Ramanujan Expansions of Arithmetic Functions of Several Variables over Fq[T]. Acta Mathematica Sinica, Chinese Series, 2022, 65(5): 891-906 https://doi.org/10.12386/A20210053

参考文献

[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Carlitz L., The singular for sums of squares of polynomials, Duke Math. J., 1947, 14:1105-1120.
[3] Cohen E., An extension of Ramanujan's sum, Duke Math. J., 1949, 16:85-90.
[4] Cohen E., Arithmetic functions associated with the unitary divisors of an integer, Math. Z., 1960, 74:66-80.
[5] Delange H., On Ramanujan expansions of certain arithmetic functions, Acta Arith., 1976, 31:259-270.
[6] Droll A., A classification of Ramanujan unitary Cayley graphs, Electron. J. Comb., 2010, 17(1):N29.
[7] Rosen M., Number Theory in Function Fields, GTM, Vol. 210, Springer, New York, 2002.
[8] Qi T. F., A Survey on the results of Ramanujan expansion (in Chinese), Pure Math. J., 2020, 10(4):339-344.
[9] Tóth L., Ramanujan expansions of arithmetic functions of several variables, Ramanujan J., 2018, 47(3):589-603.
[10] Ushiroya N., Ramanujan-Fourier series of certain arithmetic functions of two variables, Hardy-Ramanujan J., 2016, 39:1-20.
[11] Wintner A., Eratosthenian Averages, Waverly Press, Baltimore, 2017.
[12] Zheng Z. Y., On the polynomial Ramanujan sums over finite fields, Ramanujan J., 2018, 46(3):863-898.
PDF(458 KB)

921

Accesses

0

Citation

Detail

段落导航
相关文章

/