
沿实解析子流形的粗糙核Marcinkiewicz积分
Marcinkiewicz Integrals with Rough Kernels Along Real-analytic Submanifolds
本文研究沿实解析子流形的粗糙核Marcinkiewicz积分的Lp映射性质,假设径向核h∈Δγ(R+)(γ ∈(1,∞])与球面核Ω ∈ Lq(Sn-1)(q ∈(1,2]),建立了这类算子的Lp有界性.而且,通过外插的方法,在一些最佳的球面尺寸条件Ω ∈ L(log L)1/2(Sn-1)或Ω ∈ Bq(0,-1/2)(Sn-1)(q > 1)下,获得了相应的Lp界.与此同时,也考虑了相关极大粗糙核Marcinkiewicz积分的Lp估计.
This paper is devoted to studying the Lp-mapping properties of the rough Marcinkiewicz integrals with rough kernels along real-analytic submanifolds. Under assuming that the radial kernel h∈Δγ(R+) for some γ ∈ (1, ∞] and the sphere kernel Ω ∈ Lq(Sn-1) for some q ∈ (1, 2], the Lp-boundedness for such operators are established. Furthermore, by the extrapolation arguments, the corresponding Lp-bounds are obtained under some optimal size conditions on the unit sphere Ω ∈ L(log L) 1/2 (Sn-1) or Ω ∈ Bq(0,-1/2)(Sn-1) for some q > 1. Meanwhile, the Lp estimates for the related maximal rough Marcinkiewicz integrals are also considered.
Marcinkiewicz积分 / 极大算子 / 粗糙核 / 实解析子流形 {{custom_keyword}} /
Marcinkiewicz integrals / maximal operators / rough kernels / real-analytic submanifolds {{custom_keyword}} /
[1] Al-Qassem H., Al-Salman A., A note on Marcinkiewicz integral operators, J. Math. Anal. Appl., 2003, 282:698-710.
[2] Al-Qassem H., Cheng L. C., Pan Y. B., On certain rough integral operators and extrapolation, J. Inequal. Pure Appl. Math., 2009, 10(3):Art. 13, 15 pp.
[3] Al-Qassem H., Pan Y. B., On certain estimates for Marcinkiewicz integrals and extrapolation, Collect. Math., 2009, 60(2):123-145.
[4] Al-Salman A., Al-Qassem H., Cheng L. C., et al., Lp bounds for the function of Marcinkiewicz, Math. Res. Lett., 2002, 9(5-6):697-700.
[5] Benedek A., Calderón A., Panzone R., Convolution operators on Banach space value functions, Proc Nat Acad. Sci. USA, 1962, 48:356-365.
[6] Ding Y., Fan D. S., Pan Y. B., Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernel, Acta Math. Sin. Engl. Ser., 2000, 16:593-600.
[7] Ding Y., Fan D. S., Pan Y. B., On the Lp boundedness of Marcinkiewicz integrals, Michigan Math. J., 2002, 50(1):17-26.
[8] Duoandikoetxea J., Rubio de Francia J. L., Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 1986, 84:541-561.
[9] Fan D. S., Guo K. H., Pan Y. B., Singular integrals with rough kernels along real-analytic submanifolds in Rn, Integral Equations Operator Theory, 1999, 33:8-19.
[10] Fan D. S., Pan Y. B., Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math., 1997, 119:799-839.
[11] Hörmander L., The Analysis of Linear Partial Differential Operators, I, Springer-Verlag, Berlin, 1983.
[12] Jiang Y. S., Lu S. Z., Lp boundedness of a class of maximal singular integral operators, Acta Math. Sin. Chin. Ser., 1992, 35:63-72.
[13] Liu F., Wu H. X., Lp bounds for Marcinkiewicz integrals associated to homogeneous mappings, Monatsh. Math., 2016, 181:875-906.
[14] Liu F., Wu H. X., Xue Q. Y., On rough singular integrals along real-analytic submanifolds, Forum Math., 2020, 32(2):361-380.
[15] Liu R. H., Liu F., Wu H. X., On the mixed radial-angular integrability of Marcinkiewicz integrals with rough kernels. Acta Math. Sci. Ser. B, Engl. Ed., 2021, 41B(1):241-256.
[16] Lu S. Z., Taibleson M. H., Weiss G., Spaces generated by blocks, Beijing Normal Univ. Math. Ser., 1989.
[17] Pan Y. B., Boundedness of oscillatory singular integrals on Hardy spaces:Ⅱ, Indiana Univer. Math. J., 1992, 41:279-293.
[18] Sato S., Estimates for singular integrals and extrapolation, Studia Math., 2009, 192:219-233.
[19] Stein E. M., On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 1958, 88:430-466.
[20] Stein E. M., Wainger S., Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 1978, 84:1239-1295.
[21] Walsh T., On the function of Marcinkiewicz. Studia Math., 1972, 44:203-217.
[22] Wu H. X., On Marcinkiewicz integral operators with rough kernels, Integral Equations Operator Theory, 2005, 52:285-298.
[23] Wu H. X., Lp bounds for Marcinkiewicz integrals associated to surfaces of revolution, J. Math. Anal. Appl., 2006, 321(2):811-827.
家自然科学基金资助项目(11701333,11771358,11871101,11671039,11871101);中德合作研究项目(11761131002)
/
〈 |
|
〉 |