变量各向异性的非齐次拟微分象征类

杨娅娟, 余安康, 李宝德

数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 747-760.

PDF(554 KB)
PDF(554 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 747-760. DOI: 10.12386/A2021sxxb0063
论文

变量各向异性的非齐次拟微分象征类

    杨娅娟, 余安康, 李宝德
作者信息 +

Variable Anisotropic Class of Inhomogeneous Pseudo-differential Symbols

    Ya Juan YANG, An Kang YU, Bao De LI
Author information +
文章历史 +

摘要

,是Rn,上的连续多尺度椭球覆盖Θ的中心正则子覆盖.本文引入了一类适应于椭球子覆盖的非齐次拟微分象征类S0δ,δ),0≤δ<1.此象征类推广了经典的各向齐性非齐次象征类S0δ,δIn),其中Inn×n的单位矩阵.然后本文将一个经典的L2(Rn)有界性结果推广到了此象征类S0δ,δ)的情形下.

Abstract

Let be a central regular ellipsoid subcover of a continuous multi-level ellipsoid cover Θ of Rn. We introduce a class of inhomogeneous pseudo-differential symbols S0δ,δ() adapted to , which generalizes the classical isotropic inhomogeneous class S0δ,δ(In), where 0 ≤ δ < 1 and In is an identity n×n matrix. We extend a well-known L2(Rn)-boundedness result to the variable anisotropic inhomogeneous class S0δ,δ().

关键词

拟微分算子 / 各向异性 / 有界性 / 椭球

Key words

pseudo-differential operator / anisotropy / boundedness / ellipsoid

引用本文

导出引用
杨娅娟, 余安康, 李宝德. 变量各向异性的非齐次拟微分象征类. 数学学报, 2021, 64(5): 747-760 https://doi.org/10.12386/A2021sxxb0063
Ya Juan YANG, An Kang YU, Bao De LI. Variable Anisotropic Class of Inhomogeneous Pseudo-differential Symbols. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 747-760 https://doi.org/10.12386/A2021sxxb0063

参考文献

[1] Almeida V., Betancor J., Rodríguez-Mesa L., Molecules associated to Hardy spaces with pointwise variable anisotropy, Inter. Equ. Oper. Theory, 2017, 89:301-313.
[2] Bényi Á., Bownik M., Anisotropic classes of inhomogeneous pseudo-differential symbols, Collect. Math., 2013, 64:155-173.
[3] Bownik M., Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 2003, 164(781):1-122.
[4] Calderón A. P., Torchinsky A., Parabolic maximal functions associated with a distribution, Adv. Math., 1975, 16(1):1-64.
[5] Calderón A. P., Vaillancourt R., A class of bounded pseudo-differential operators, Proc. Natl. Acad. Sci. USA, 1972, 69(5):1185-1187.
[6] Coifman R., Meyer Y., Au delá des opérateurs pseudo-différentiels, Astérisque, 1978, No. 57.
[7] Dahmen W., Dekel S., Petrushev P., Two-level-split decomposition of anisotropic Besov spaces, Constr. Approx, 2010, 31(2):149-194.
[8] Dekel S., On the analysis of anisotropic smoothness, J. Approx. Theory, 2012, 164(8):1143-1164.
[9] Dekel S., Han Y. S., Petrushev P., Anisotropic meshless frames on Rn, J. Fourier Anal. Appl., 2009, 15(5):634-662.
[10] Dekel S., Petrushev P., Weissblat T., Hardy spaces on Rn with pointwise variable anisotropy, J. Fourier Anal. Appl., 2011, 17(5):1066-1107.
[11] Fefferman C., Lp bounds for pseudo-differential operators, Isr. J. Math., 1973, 14(4):413-417.
[12] Garello G., Anisotropic pseudodifferential operators of type 1, 1, Ann. Mat. Pura Appl., 1988174(4):135-160.
[13] Leopold H. G., Boundedness of anisotropic pseudo-differential operators in function spaces of Besov-HardySobolev type, Z. Anal. Anwendungen, 1986, 5(5):409-417.
[14] Lin Y., Lu S. Z., Pseudo-differential operators on sobolev and lipschitz spaces, Acta Math. Sinica, English Series, 2010, 26(1):131-142.
[15] Stein E. M., Harmonic Analysis:Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
[16] Xiao J. W., Jiang Y. S., Gao W. H., Bilinear pseudo-differential operators on local Hardy spaces, Acta Math. Sinica, English Series, 2012, 28(2):255-266.

基金

国家自然科学基金资助项目(11861062);新疆创新环境(人才、基地)建设专项—自然科学计划(自然科学基金)联合基金(2020D01C048)

PDF(554 KB)

Accesses

Citation

Detail

段落导航
相关文章

/