一类Filiform李代数Qn的自同构群

刘丽娜, 唐黎明

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 959-966.

PDF(323 KB)
PDF(323 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 959-966. DOI: 10.12386/A2021sxxb0079
论文

一类Filiform李代数Qn的自同构群

    刘丽娜, 唐黎明
作者信息 +

Automorphism Groups of a Series of Filiform Lie Algebras Qn

    Li Na LIU, Li Ming TANG
Author information +
文章历史 +

摘要

本文利用filiform李代数Qn的极小忠实表示,获得了Qn的自同构群的子群,包括内自同构群,中心自同构群,对合自同构群,外自同构群.

Abstract

In this paper, using the minimal faithful representation of Qn, we characterize some subgroups of automorphism groups of Qn, including inner automorphism groups, central automorphism groups, involution automorphism groups and outer automorphism groups.

关键词

李代数 / filiform李代数 / 自同构群

Key words

Lie algebras / filiform Lie algebras / automorphism groups

引用本文

导出引用
刘丽娜, 唐黎明. 一类Filiform李代数Qn的自同构群. 数学学报, 2021, 64(6): 959-966 https://doi.org/10.12386/A2021sxxb0079
Li Na LIU, Li Ming TANG. Automorphism Groups of a Series of Filiform Lie Algebras Qn. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 959-966 https://doi.org/10.12386/A2021sxxb0079

参考文献

[1] Bahturin Y., Goze M., Remm E., Group gradings on filiform Lie algebra, Comm. Algebra, 2016, 44(1):40-62.
[2] Cao Y. A., Automorphisms of the Lie Algebra of Strictly Upper Triangular Matrices over Certain Commutative Rings, Linear Algebra Appl., 2001, 329:175-187.
[3] Cao Y. A., Tan Z. W., Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl., 2003, 360:105-122.
[4] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972.
[5] Karimjanov I. A., Ladra M., Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras, J. Geom. Phys., 2019, 144:235-244.
[6] Liu L., Tang L. M., The automorphism groups of Heisenberg Lie (super) algebras (in Chinese), J. Math., 2018, 38(3):502-510.
[7] Nikolayevsky Y., Tsartsaflis I., Cohomology of N-graded Lie algebras of maximal class over Z2, J. Lie Theory, 2017, 27:529-544.
[8] Ou S. K., Fan L. J., Wang D. Y., Multiplicative semigroup automorphisms of strictly triangular matrices over a commutative ring (in Chinese), Adv. Math., 2011, 40(5):621-630.
[9] Ren B., Automorphism group of solvable complete Lie algebras with quasi filiform radical, J. Univ. Sci. Technol. Suzhou (Natur. Sci.), 2006, 23(3):16-20.
[10] Tsartsaflis I., On the Betti numbers of filiform Lie algebras over fields of characteristic two, Rev. Un. Mat. Argentina, 2017, 58:95-106.
[11] Wang H. T., Huang C. H., Lie triple derivations and bosonic and fernionic representations for filiform Lie algebra Ln, J. Math. Sci., 2015, 31:43-55.
[12] Wu M. Z., The solvable Lie algebras with filiform Rn nilradicals, Chinese Quart. J. Math., 2011, 26(1):100-107.

基金

国家自然科学基金项目(12001141,11971134);黑龙江省自然科学基金项目(JQ2020A002)

PDF(323 KB)

Accesses

Citation

Detail

段落导航
相关文章

/