树映射的不稳定流形,非游荡集与拓扑熵

孙太祥

数学学报 ›› 2002, Vol. 45 ›› Issue (4) : 647-660.

PDF(462 KB)
PDF(462 KB)
数学学报 ›› 2002, Vol. 45 ›› Issue (4) : 647-660. DOI: 10.12386/A2002sxxb0086
论文

树映射的不稳定流形,非游荡集与拓扑熵

    孙太祥
作者信息 +

Unstable Manifolds, Nonwandering Sets and Topological Entropy of Tree Maps

    Tai Xiang SUN
Author information +
文章历史 +

摘要

设f是个端点数为n的树T上的连续自映射.本文得到了f的单侧不稳定流形与拓扑熵的关系,并证明了:(1)如果x∈i=0∞fi(Ω(f))-P(f),那么,x的轨道是无限的;(2)如果f有一组可循环的不动点,那么h(f)≥In2(n-1).

Abstract

Let f be a continuous self-map of tree T with n end point. In this paper, we obtain connection between unilateral unstable manifolds and topological entropy of f and prove that: (1) If x ∈∩i=0∞fi(Ω(f)) -P(f), then the orbit of x is infinite; (2) If f has class of circularible fixed points, then h(f)≥In2/(n-1).

关键词

湍流 / 不稳定流形 / 非游荡集 / 拓扑熵 / 树映射

引用本文

导出引用
孙太祥. 树映射的不稳定流形,非游荡集与拓扑熵. 数学学报, 2002, 45(4): 647-660 https://doi.org/10.12386/A2002sxxb0086
Tai Xiang SUN. Unstable Manifolds, Nonwandering Sets and Topological Entropy of Tree Maps. Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 647-660 https://doi.org/10.12386/A2002sxxb0086
PDF(462 KB)

259

Accesses

0

Citation

Detail

段落导航
相关文章

/