Ree群~2G_2(q)与2-(v,k,l)区组设计(Ⅱ)

周胜林

数学学报 ›› 2003, Vol. 46 ›› Issue (4) : 823-828.

数学学报 ›› 2003, Vol. 46 ›› Issue (4) : 823-828. DOI: 10.12386/A2003sxxb0110
论文

Ree群~2G_2(q)与2-(v,k,l)区组设计(Ⅱ)

    周胜林
作者信息 +

The Ree Groups 2G2(q) and 2-(v,k, 1) Block Designs (Ⅱ)

    Sheng Lin ZHOU
Author information +
文章历史 +

摘要

本文证明了自同构群的基柱为Ree群~2G_2(q)的区-本原2-(v,k,1)设计必为Ree unital,即2-(q~3+1,q+1,1)设计,从而部分地回答了Praeger问题.

Abstract

In this paper, we prove that if D is a 2-(u, k, 1) design with G ≤ AutD block-primitive and 2G2(q) (?) G ≤ Aut(2G2(q)) with q = 32n+1, then D is a Ree unital, i.e. a 2-(q3 + 1,q + 1,1) block design. This gives a partial answer to the Praeger's problem.

关键词

自同构群 / 区组设计 / Ree群 / 点-本原 / 区-本原

引用本文

导出引用
周胜林. Ree群~2G_2(q)与2-(v,k,l)区组设计(Ⅱ). 数学学报, 2003, 46(4): 823-828 https://doi.org/10.12386/A2003sxxb0110
Sheng Lin ZHOU. The Ree Groups 2G2(q) and 2-(v,k, 1) Block Designs (Ⅱ). Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 823-828 https://doi.org/10.12386/A2003sxxb0110

Accesses

Citation

Detail

段落导航
相关文章

/