含非对称临界非线性项的p-Laplace方程的多解问题

耿堤

数学学报 ›› 2004, Vol. 47 ›› Issue (4) : 751-762.

PDF(533 KB)
PDF(533 KB)
数学学报 ›› 2004, Vol. 47 ›› Issue (4) : 751-762. DOI: 10.12386/A2004sxxb0096
论文

含非对称临界非线性项的p-Laplace方程的多解问题

    耿堤
作者信息 +

On Multiple Solutions of p-Laplacian Equation with Non-Symmetric Critical Nonlinearity

    Di GENG
Author information +
文章历史 +

摘要

本文考虑含非奇对称临界非线性项的p-Laplace方程Dirichlet问题。运用改进的集中列紧原理证明了在某些指数条件下非奇对称的临界非线性项仍能保证无穷多弱解的存在性。

Abstract

In this paper, a class of Dirichlet boundary problem of p-Laplacian operators is studied. The problem involves non-odd symmetric critical nonlinearity. Existence of infinitely many solutions of this problem is obtained with improved Compactness- Concentration principle.

关键词

集中列紧原理 / p-Laplace方程 / 临界指标

引用本文

导出引用
耿堤. 含非对称临界非线性项的p-Laplace方程的多解问题. 数学学报, 2004, 47(4): 751-762 https://doi.org/10.12386/A2004sxxb0096
Di GENG. On Multiple Solutions of p-Laplacian Equation with Non-Symmetric Critical Nonlinearity. Acta Mathematica Sinica, Chinese Series, 2004, 47(4): 751-762 https://doi.org/10.12386/A2004sxxb0096
PDF(533 KB)

Accesses

Citation

Detail

段落导航
相关文章

/