半序空间中一类算子方程的可解性

冯育强;刘三阳

数学学报 ›› 2003, Vol. 46 ›› Issue (2) : 411-416.

数学学报 ›› 2003, Vol. 46 ›› Issue (2) : 411-416. DOI: 10.12386/A2003sxxb0057
论文

半序空间中一类算子方程的可解性

    冯育强;刘三阳
作者信息 +

Solvability of an Operator Equation in Partial Ordered Space

    Yu Qiang FENG,San Yang LIU
Author information +
文章历史 +

摘要

本文利用半序方法,在完备度量空间和Banach空间中分别研究了算子方程 Lx=Nx的可解性,证明了其解的存在性,并将所获结果应用于微分-积分方程的两 点边值问题.

Abstract

In this paper, techniques of partial order theory are used to study the solvability of an operator equation Lx = Nx in complete metric space and Banach space, respectively. Existence results are obtained and then applied to a two point boundary value problem of an intergro-differential equation.

关键词

Banach空间 / 完备度量空间 / 序连续 / 半序

引用本文

导出引用
冯育强;刘三阳. 半序空间中一类算子方程的可解性. 数学学报, 2003, 46(2): 411-416 https://doi.org/10.12386/A2003sxxb0057
Yu Qiang FENG,San Yang LIU. Solvability of an Operator Equation in Partial Ordered Space. Acta Mathematica Sinica, Chinese Series, 2003, 46(2): 411-416 https://doi.org/10.12386/A2003sxxb0057

Accesses

Citation

Detail

段落导航
相关文章

/