R~N上临界增长的椭圆方程无穷多解的存在性

冉启康;方爱农

数学学报 ›› 2002, Vol. 45 ›› Issue (4) : 773-782.

PDF(425 KB)
PDF(425 KB)
数学学报 ›› 2002, Vol. 45 ›› Issue (4) : 773-782. DOI: 10.12386/A2002sxxb0100
论文

R~N上临界增长的椭圆方程无穷多解的存在性

    冉启康;方爱农
作者信息 +

Existence of Infinitely Many Solutions on a Class of Elliptic Equations in R_N

    Qi Kang RAN(1),Ai Nong FANG(2)
Author information +
文章历史 +

摘要

本文证明了RN上的拟线性椭圆型方程-div(|Du|p-2Du)+|u|p-2u=λ(x)·|u|α-2u+a(x)|u|s-2u+b(x)|u|p*-2u在W1,p(RN)中无穷多解的存在性,其中N≥3,2≤p

Abstract

This paper gives the result of existence of infinitely many solutions on quasi-linear elliptic equation -div[|Du|p-2Du] +|u|p-2u=λ(x)|u|α-2u+a(x)|u|s-2u+a(x)|u|p*-2u in W1,P(RN), where N≥3, 2≤p

关键词

亏格 / 弱解 / 拟线性椭圆型方程 / 集中紧性原理

引用本文

导出引用
冉启康;方爱农. R~N上临界增长的椭圆方程无穷多解的存在性. 数学学报, 2002, 45(4): 773-782 https://doi.org/10.12386/A2002sxxb0100
Qi Kang RAN(1),Ai Nong FANG(2). Existence of Infinitely Many Solutions on a Class of Elliptic Equations in R_N. Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 773-782 https://doi.org/10.12386/A2002sxxb0100
PDF(425 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/