摘要
设(Z_2)~k作用于光滑闭流形M~n上,其不动点集具有常余维数(2~k-1),法丛分解为 (1,…,1). 2~k-1本文利用Kosniowski-Stong公式得出它的一个必要条件。(Z_2)~2作用于光滑闭流形M~n上,其不动点集具有常余维数3,法丛分解为P={(2,1,0),(2,0,1),(1,1,1)}.J_(n,2)~3(p)是具有上述性质的未定向的n维上协边类[M~n]构成的集合。本文通过构造上协边环MO_*的一组生成元决定了J_(n,2)~3(p)的群结构。
Abstract
Let Mn be a closed smooth n-manifold, which admits (Z2)k-actions with fixed point set data
By Kosniowski-Stong formula we get a necessary condition. Special generators of the unoriented cobordism ring MO* are constructed to determine the group Jn,23 (P) n-dimensional cobordism classes in MOn containing a representative Mn admitting a (Z2)2-action with fixed point set of constant codimension 3, p - {(2, 1,0), (2,0, 1), (1,1,1)}.
关键词
射影丛 /
不动点集 /
(Z_2)~k作用 /
上协边类
{{custom_keyword}} /
吴振德;郭敏英.
(Z_2)~k作用下不动点集的一个必要条件. 数学学报, 2003, 46(5): 937-942 https://doi.org/10.12386/A2003sxxb0125
Zhen De WU(1),Min Ying GUO(2).
A Necessary Condition for (Z_2)~k-Actions with Fixed Point Set Data. Acta Mathematica Sinica, Chinese Series, 2003, 46(5): 937-942 https://doi.org/10.12386/A2003sxxb0125
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}