Teichmuller空间的星形结构问题

沈玉良

数学学报 ›› 1995, Vol. 38 ›› Issue (4)

数学学报 ›› 1995, Vol. 38 ›› Issue (4) DOI: 10.12386/A1995sxxb0063
论文

Teichmuller空间的星形结构问题

    沈玉良
作者信息 +

On the Problem of Starlikeness of Teichmuller Spaces

Author information +
文章历史 +

摘要

对于任一保持单位圆盘Δ及其外部Δ的Fuchs群Γ,利用Bers嵌入,Teichmuller空间T(Γ)可看成是Δ上Γ的有界全纯二次微分B(Δ,Γ)中的一个有界区域,本文的目的是讨论Teichmuller空间T(Γ)的星形问题。特别地,我们证明了:当Γ是第二类Fuchs群时,T(Γ)不是星形的.

Abstract

Let Γ be a Fuchsian group acting on the unit disk Δ. The Bers embedding repre-sents the Teichmuller space T(Γ)of Γ as a bounded domain in the space of bounded quadraticdifferentials for Γ. Our main result is: There exists a universal constant d_0>0 such that, for anygiven Fuchaian group Γ,suppose that there exists a hyperbolic disk in Δ of radius whichis precisely invariant under the trivial subgroup{1} of Γ, then T(Γ)is not starlike. Particullary,when Γ is a Fuchsian group of the second kind,T(Γ)is not starlike.

关键词

Teichmuller空间 / Bers嵌入 / 星形

引用本文

导出引用
沈玉良. Teichmuller空间的星形结构问题. 数学学报, 1995, 38(4) https://doi.org/10.12386/A1995sxxb0063
On the Problem of Starlikeness of Teichmuller Spaces. Acta Mathematica Sinica, Chinese Series, 1995, 38(4) https://doi.org/10.12386/A1995sxxb0063

456

Accesses

0

Citation

Detail

段落导航
相关文章

/