有限域上一类方程组解数的直接公式

杨继明;

数学学报 ›› 2007, Vol. 50 ›› Issue (3) : 653-660.

PDF(362 KB)
PDF(362 KB)
数学学报 ›› 2007, Vol. 50 ›› Issue (3) : 653-660. DOI: 10.12386/A2007sxxb0075
论文

有限域上一类方程组解数的直接公式

    杨继明;
作者信息 +

An Explicit Formula for the Number of Solutions of Certain System of Equations over Finite Fields

    Ji Ming YANG
Author information +
文章历史 +

摘要

本文给出有限域F=F_q(q=p~f,f≥1,p是一个奇素数)上一类方程组∑_(i=s_(r-1)+1~(s_r)∑_(j=1)~(m_i-m_(i-1))a_(m_(i-1)+j)x_1~(d_m(i-1)+j,1)…x_(n_i)~d_(m_(i-1)+j,n_i)=b_r,r=1,…,k当指数满足一定条件时,在F~(n_s_k)上解数的一个直接公式,这里d_(ij)>0,a_i∈F~*,b_i∈F,0= s_0<s_1<…<s_k,0=m_0<m_1<…<m_(s_k),0=n_0<n_1<…<n_(s_k), m_1≤n_1,…,m_(s_k)≤n_(s_k).

Abstract

Let F=F_q(q=p~f,f≥1,p is an odd prime number).In this paper,we get an explicit formula for the number of F-rational solutions of the following systems of equations defined over ∑_(i=s_(r-1)+1~(s_r)∑_(j=1)~(m_i-m_(i-1))a_(m_(i-1)+j)x_1~(d_m(i-1)+j,1)…x_(n_i)~d_(m_(i-1)+j,n_i)=b_r,r=1,…,k where dij>0 satisfying certain conditions,a_i∈F~*,b_i∈F,0= s_0<s_1<…<s_k,0=m_0<m_1<…<m_s_k,0=n_0o<n_1<…<n_s_k, m_1≤n_1,…,m_s_k≤n_s_k.

关键词

方程的解数 / 矩阵 / 有限域

引用本文

导出引用
杨继明;. 有限域上一类方程组解数的直接公式. 数学学报, 2007, 50(3): 653-660 https://doi.org/10.12386/A2007sxxb0075
Ji Ming YANG. An Explicit Formula for the Number of Solutions of Certain System of Equations over Finite Fields. Acta Mathematica Sinica, Chinese Series, 2007, 50(3): 653-660 https://doi.org/10.12386/A2007sxxb0075
PDF(362 KB)

287

Accesses

0

Citation

Detail

段落导航
相关文章

/