摘要
本文讨论一类非线性Schrdinger方程-ε~2△v+V(z)v=K(x)v~p,x∈R~N,v∈W~(1,2)(R~N),v(x)>0,势函数V(x)有正下界和在无穷远处为零两种情形.通过强最大值原理我们证明方程的基态解关于充分小的ε>0一致集中.
Abstract
This paper deals with a class of nonlinear Schrdinger equations-ε~2△v+ V(x)v=K(x)v~p,x∈R~N,v∈W~(1,2)(R~N),v(x)>0,with potential V(x)having a positive lower bound or vanishing at infinity,respectively.By the strong maximum principle we show that the ground states concentrate uniformly in smallε>0.
关键词
基态解 /
非线性Schrdinger方程 /
集中
{{custom_keyword}} /
张平正;.
非线性Schrdinger方程基态解的一致集中. 数学学报, 2008, 51(1): 165-170 https://doi.org/10.12386/A2008sxxb0020
Ping Zheng ZHANG.
On Uniform Concentration of Ground States of Nonlinear Schrdinger Equations. Acta Mathematica Sinica, Chinese Series, 2008, 51(1): 165-170 https://doi.org/10.12386/A2008sxxb0020
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}