摘要
设F_q为有限域,f_i(x)=a_(i1)x_1~(d_(i1))+…+a_(in)x_n~(d_(in))+c_i(i=1,…,m)为F_q上一组对角多项式,用N(V)表示由f_i(i=1,…,m)确定的簇中的F_q.有理点的个数.通过应用Adolphson和Sperber所引进的牛顿多面体方法,证明了ord_qN(V)≥[1/d_1+…+1/d_n]-m,其中d_i=max{d_(1i),…,d_(mi)}.该结果在许多情形下可以改进Ax- Katz定理,并推广了Wan在m=1时得到的一个定理,而且我们对Wan的定理给出了一个不同的证明.
Abstract
Let F_q be the finite field,and let N(V) denote the number of F_q-rational points on the variety defined by the diagonal polynomials over F_q:f_i(x)=a_(i1)x_1~(d_(i1))+…+a_(in)x_n~(d_(in))+C_i,i=1,...,m.By using the Newton polyhedra technique introduced by Adolphson and Sperber,we show that ord_qN(V)≥「1/(d_1)+…+1/(d_n)(?)-m with d_i=max{d_(1i),...,d_(mi)},which can improve the Ax-Katz theorem in many cases.This generalizes Wan's theorem for the case m=1.Moreover,we provide a different proof to Wan's theorem.
关键词
对角多项式 /
牛顿多面体 /
有限域
{{custom_keyword}} /
曹炜;.
有限域上由一组对角多项式确定的簇中的点. 数学学报, 2007, 50(2): 357-362 https://doi.org/10.12386/A2007sxxb0043
Wei CAO.
Points on the Variety Defined by a System of Diagonal Polynomials over Finite Fields. Acta Mathematica Sinica, Chinese Series, 2007, 50(2): 357-362 https://doi.org/10.12386/A2007sxxb0043
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}