次临界增长P-调和组的处处内部正则性

郑神州章腊萍

数学学报 ›› 2008, Vol. 51 ›› Issue (5) : 1001-101.

数学学报 ›› 2008, Vol. 51 ›› Issue (5) : 1001-101. DOI: 10.12386/A2008sxxb0117
论文

次临界增长P-调和组的处处内部正则性

    郑神州章腊萍
作者信息 +

Everywhere Interior Regularity for P-Harmonic Form Systems with the Subcritical Growth

    Shen Zhou ZHENG
Author information +
文章历史 +

摘要

对于低阶梯度项满足次临界增长的p-调和型方程组,本文建立了 其弱解梯度具有处处内部H\"older连续性的正则性结果, 本文结论就低阶项的增长指标来说已经达到最佳.

Abstract

We shall establish that the derivatives of weak solutions for P-Harmonic systems under the subcritical growth belong to everywhere interior H\"older continuity spaces with some H\"older exponent. This conclusion is the best situation as for the lower order items with the subcritical growth index.

关键词

p-调和型方程组 / Morrey-Campanato空间 / 次临界增长

引用本文

导出引用
郑神州章腊萍. 次临界增长P-调和组的处处内部正则性. 数学学报, 2008, 51(5): 1001-101 https://doi.org/10.12386/A2008sxxb0117
Shen Zhou ZHENG. Everywhere Interior Regularity for P-Harmonic Form Systems with the Subcritical Growth. Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 1001-101 https://doi.org/10.12386/A2008sxxb0117

242

Accesses

0

Citation

Detail

段落导航
相关文章

/