Crossed Product of Finite von Neumann Algebras with Property Γ

Wen Hua QIAN, Jun Hao SHEN

Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 301-308.

PDF(426 KB)
PDF(426 KB)
Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 301-308. DOI: 10.12386/A2022sxxb0023

Crossed Product of Finite von Neumann Algebras with Property Γ

  • Wen Hua QIAN1, Jun Hao SHEN2
Author information +
History +

Abstract

Let M be a separable type II1 von Neumann algebra. We prove that, if M has Property Γ, G is a countable amenable group and α is a trace preserving, properly outer action of G on M, then the crossed product MαG is a type II1 von Neumann algebra with Property Γ.

Key words

crossed product / property Γ / amenable

Cite this article

Download Citations
Wen Hua QIAN, Jun Hao SHEN. Crossed Product of Finite von Neumann Algebras with Property Γ. Acta Mathematica Sinica, Chinese Series, 2022, 65(2): 301-308 https://doi.org/10.12386/A2022sxxb0023

References

[1] Akemann C., The dual space of an operator algebra, Trans. Amer. Math. Soc., 1967, 126: 286–302.
[2] Bedós E., On actions of amenable groups on II1-factors, J. Funct. Anal., 1990, 91(2): 404–414.
[3] Bisch D., On the existence of central sequences in subfactors, Tran. Amer. Math. Soc., 1990, 321: 117–128.
[4] Connes A., Classification of injective factors cases II1, II, IIIλ, λ = 1, Ann. Math., 1976, 104: 73–115.
[5] Hadwin D., Qian W., Shen J., Similarity degree of type II1 von Neumann algebras with Property Γ, J. Oper. Theory, 2018, 2: 269–285.
[6] Jones V., Sunder V. S., Introduction to Subfactors, Cambridge University Press, Cambridge, 1997.
[7] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras I, II, Academic Press, Orlando, 1983, 1986.
[8] Mcduff D., A countable infinity of II1 factors, Ann. of Math., 1969, 90: 361–371.
[9] Mcduff D., Uncountably many II1 factors, Ann. Math., 1969, 90: 372–377.
[10] Popa S., Maximal injective subalgebras in factors associated with free groups, Adv. Math., 1983, 50: 27–48.
[11] Qian W. H., Shen J. H., Hochschild Cohomology of type II1 von Neumann algebras with Property Γ, Oper. Matrices, 2015, 9: 507–543.
[12] Takesaki M., On the conjugate space of operator algebra, Tôhoku Math. J., 1958, 11: 125–129.
[13] Takesaki M., On the singularity of a positive linear functional on operator algebras, Proc. Japan Acad., 1959, 35: 365–366.
[14] Von Neumann J., On rings of operators. Reduction theory, Ann. Math., 1949, 50: 401–485.
[15] Yosida K., Hewitt E., Finite additive measures, Trans. Amer. Math. Soc., 1952, 72: 46–66.
PDF(426 KB)

376

Accesses

0

Citation

Detail

Sections
Recommended

/