Hardy Spaces over the Octonionic Siegel Half Spaces

Jin Xun WANG, Xing Min LI, Jian Quan LIAO

Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (3) : 523-532.

PDF(470 KB)
PDF(470 KB)
Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (3) : 523-532. DOI: 10.12386/A2022sxxb0043

Hardy Spaces over the Octonionic Siegel Half Spaces

  • Jin Xun WANG1, Xing Min LI2, Jian Quan LIAO3
Author information +
History +

Abstract

The relation between the octonionic Heisenberg group and the octonionic Siegel half space is investigated; the Hardy spaces over the octonionic Siegel half spaces are studied, of which the characterization through boundary limits is given.

Key words

octonions / left O-analytic functions / Heisenberg group / Siegel half space / Hardy space

Cite this article

Download Citations
Jin Xun WANG, Xing Min LI, Jian Quan LIAO. Hardy Spaces over the Octonionic Siegel Half Spaces. Acta Mathematica Sinica, Chinese Series, 2022, 65(3): 523-532 https://doi.org/10.12386/A2022sxxb0043

References

[1] Adams W. W., Berenstein C. A., Loustaunau P., et al., Regular functions of several quaternionic variables and the Cauchy–Fueter complex, J. Geom. Anal., 1999, 9: 1–15.
[2] Alexander K., David T., Subharmonicity of powers of octonion-valued monogenic functions and some applications, Bull. Belg. Math. Soc., 2006, 13: 609–617.
[3] Baez J. C., The octonions, Bull. Amer. Math. Soc., 2002, 39: 145–205.
[4] Barker S. R., Salamon S. M., Analysis on a generalized Heisenberg group, J. London Math. Soc., 1983, 28: 184–192.
[5] Chang D. C., Markina I., Quaternion H-type group and differential operator Δλ, Sci. in China Ser. A, 2008, 4: 523–540.
[6] Christ M., Liu H. P., Zhang A., Sharp Hardy–Littlewood–Sobolev inequalities on the octonionic Heisenberg group, Calc. Var., 2016, 55: Art. 11, 18 pp.
[7] Deng D. G., Han Y. S., The Theory of Hp Spaces (in Chinese), Peking University Press, Beijing, 1992.
[8] Gilbert J. E., Murray M. A. M., Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge, 1991.
[9] Gindikin S. G., Analysis in homogeneous domains, Russian Mathematical Surveys, 1964, 19: 1–89.
[10] Hurwitz A., Über die Composition der quadratischen Formen von beliebig vielen Variablen, Nachr. Ges. Wiss. Göttingen, 1898, 1898: 309–316.
[11] Jacobson N., Basic Algebra I (2nd Edition), W. H. Freeman and Company, New York, 1985.
[12] Li X. M., Octonion analysis (in Chinese), Ph.D. Thesis, Peking University, Beijing, 1998.
[13] Li X. M., Peng L. Z., Qian T., Cauchy integrals on Lipschitz surfaces in octonionic spaces, J. Math. Anal. Appl., 2008, 343: 763–777.
[14] Li X. M., Peng L. Z., Qian T., The Paley–Wiener theorem in the non-commutative and non-associative octonions, Sci. China Ser. A, 2009, 52: 129–141.
[15] Li X. M., Wang J. X., Orthogonal invariance of the Dirac operator and the critical index of subharmonicity for octonionic analytic functions, Adv. Appl. Clifford Algebras, 2014, 24(1): 141–149.
[16] Li X. M., Zhao K., Peng L. Z., Characterization of octonionic analytic functions, Complex Variables, 2005, 50: 1031–1040.
[17] Liao J. Q., Li X. M., The necessary and sufficient condition for [D, ϕ(x), λ] = 0, Acta Math. Sinica, Chin. Ser., 2009, 52(6): 1085–1090.
[18] Liao J. Q., Li X. M., Wang J. X., Orthonormal basis of the octonionic analytic functions, J. Math. Anal. Appl., 2010, 366: 335–344.
[19] Liao J. Q., Wang J. X., The necessary and sufficient condition for D(ϕ(εx)) = 0, Acta Math. Sinica, Chin. Ser., 2013, 56(4): 597–604.
[20] Stein E. M., Harmonic Analysis, Princeton University Press, Princeton, 1993.
[21] Stein E. M., Weiss G., On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math., 1960, 103: 25–62.
[22] Wang J. X., Li X. M., The octonionic Bergman kernel for the half space, Adv. Appl. Clifford Algebras, 2020, 30(4): 57.
[23] Wang J. X., Li X. M., Liao J. Q., The quaternionic Cauchy–Szegö kernel on the quaternionic Siegel half space, arXiv:1210.5086, 2012.
PDF(470 KB)

401

Accesses

0

Citation

Detail

Sections
Recommended

/